Campus Units

Physics and Astronomy, Ames Laboratory

Document Type

Article

Publication Version

Published Version

Publication Date

4-24-2020

Journal or Book Title

Physical Review Letters

Volume

124

Issue

16

First Page

167204

DOI

10.1103/PhysRevLett.124.167204

Abstract

The antiferromagnetic (AFM) compound MnBi2Te4 is suggested to be the first realization of an AFM topological insulator. We report on inelastic neutron scattering studies of the magnetic interactions in MnBi2Te4 that possess ferromagnetic triangular layers with AFM interlayer coupling. The spin waves display a large spin gap and pairwise exchange interactions within the triangular layer are long ranged and frustrated by large next-nearest neighbor AFM exchange. The degree of frustration suggests proximity to a variety of magnetic phases, potentially including skyrmion phases, which could be accessed in chemically tuned compounds or upon the application of symmetry-breaking fields.

Comments

This article is published as Li, Bing, J-Q. Yan, D. M. Pajerowski, Elijah Gordon, A-M. Nedić, Y. Sizyuk, Liqin Ke, P. P. Orth, D. Vaknin, and R. J. McQueeney. "Competing Magnetic Interactions in the Antiferromagnetic Topological Insulator MnBi 2 Te 4." Physical Review Letters 124, no. 16 (2020): 167204. DOI: 10.1103/PhysRevLett.124.167204. Posted with permission.

Copyright Owner

American Physical Society

Language

en

File Format

application/pdf

Share

COinS