Nodeless multiband superconductivity in stoichiometric single-crystalline CaKFe4 As4

Thumbnail Image
Date
2017-03-01
Authors
Cho, Kyuil
Fente, A.
Teknowijoyo, S.
Tanatar, Makariy
Joshi, Kamal
Nusran, Naufer
Kong, Tai
Meier, William
Kaluarachchi, Udhara
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Canfield, Paul
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

Measurements of the London penetration depth Δλ(T) and tunneling conductance in single crystals of the recently discovered stoichiometric iron-based superconductor CaKFe4As4 (CaK1144) show nodeless, two-effective-gap superconductivity with a larger gap of about 6–10 meV and a smaller gap of about 1–4 meV. Having a critical temperature Tc,onset≈35.8 K, this material behaves similar to slightly overdoped (Ba1−xKx)Fe2As2 (e.g., x=0.54,Tc≈34 K), a known multigap s± superconductor. We conclude that the superconducting behavior of stoichiometric CaK1144 demonstrates that two-gap s± superconductivity is an essential property of high-temperature superconductivity in iron-based superconductors, independent of the degree of substitutional disorder.

Comments

This article is published as Cho, Kyuil, A. Fente, S. Teknowijoyo, M. A. Tanatar, K. R. Joshi, N. M. Nusran, T. Kong, W. R. Meier, U. Kaluarachchi, I. Guillamon, H. Suderow, S. L. Bud’ko, P. C. Canfield, and R. Prozorov. "Nodeless multiband superconductivity in stoichiometric single-crystalline CaKFe4 As4." Physical Review B 95, no. 10 (2017): 100502. DOI: 10.1103/PhysRevB.95.100502. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Sun Jan 01 00:00:00 UTC 2017
Collections