Campus Units

Physics and Astronomy, Ames Laboratory

Document Type


Publication Version

Published Version

Publication Date


Journal or Book Title

Physical Review B





First Page





We present a detailed study of the combined effects of Sr substitution and hydrostatic pressure on the ground-state properties of CaFe2As2. Measurements of the electrical resistance and magnetic susceptibility, both at ambient and finite pressure P≤2 GPa, were performed on Ca1−xSrxFe2As2 single crystals grown out of Sn flux. We find that by Sr substitution the transition temperature to the magnetic/structural phase is enhanced and therefore a higher pressure is needed to suppress the transition to lowest temperature. In addition, the transition to the collapsed tetragonal phase is found at a pressure, which is distinctly higher than in the pure compound. This implies that the stability ranges of both phases shift on the pressure-axis upon doping, but the latter one with a higher rate. These observations suggest the possibility of separating the two phase lines, which intersect already at elevated temperatures for x=0 and low Sr concentration levels. For x=0.177, we find strong evidence that both phases remain separated down to the lowest temperature and that a zero-resistance state emerges in this intermediate pressure window. This observation indicates that Sr substitution combined with hydrostatic pressure provides another route for stabilizing superconductivity in CaFe2As2. Our results are consistent with the notion that (i) preserving the fluctuations associated with the structural-magnetic transition to low temperatures is vital for superconductivity to form in this material and that (ii) the nonmagnetic collapsed tetragonal phase is detrimental for superconductivity.


This article is published as Knöner, S., E. Gati, S. Köhler, B. Wolf, U. Tutsch, S. Ran, M. S. Torikachvili, S. L. Bud'ko, P. C. Canfield, and M. Lang. "Combined effects of Sr substitution and pressure on the ground states in CaFe 2 As 2." Physical Review B 94, no. 14 (2016): 144513. DOI: 10.1103/PhysRevB.94.144513. Posted with permission.

Copyright Owner

American Physical Society



File Format