Campus Units
Physics and Astronomy, Chemistry, Materials Science and Engineering, Ames Laboratory
Document Type
Article
Publication Version
Accepted Manuscript
Publication Date
2-24-2014
Journal or Book Title
Nature Communications
Volume
5
First Page
3333
DOI
10.1038/ncomms4333
Abstract
Large magnetic anisotropy and coercivity are key properties of functional magnetic materials and are generally associated with rare earth elements. Here we show an extreme, uniaxial magnetic anisotropy and the emergence of magnetic hysteresis in Li2(Li1−xFex)N. An extrapolated, magnetic anisotropy field of 220 T and a coercivity field of over 11 T at 2 K outperform all known hard ferromagnets and single-molecular magnets. Steps in the hysteresis loops and relaxation phenomena in striking similarity to single-molecular magnets are particularly pronounced for x≪1 and indicate the presence of nanoscale magnetic centres. Quantum tunnelling, in the form of temperature-independent relaxation and coercivity, deviation from Arrhenius behaviour and blocking of the relaxation, dominates the magnetic properties up to 10 K. The simple crystal structure, the availability of large single crystals and the ability to vary the Fe concentration make Li2(Li1−xFex)N an ideal model system to study macroscopic quantum effects at elevated temperatures and also a basis for novel functional magnetic materials.
Copyright Owner
Macmillan Publishers Limited
Copyright Date
2014
Language
en
File Format
application/pdf
Recommended Citation
Jesche, A.; McCallum, R. W.; Thimmaiah, S.; Jacobs, J. L.; Taufour, V.; Kreyssig, Andreas; Houk, R. S.; Bud’ko, Sergey L.; and Canfield, Paul C., "Giant magnetic anisotropy and tunnelling of the magnetization in Li-2(Li1-xFex)N" (2014). Physics and Astronomy Publications. 617.
https://lib.dr.iastate.edu/physastro_pubs/617
Included in
Condensed Matter Physics Commons, Engineering Physics Commons, Materials Chemistry Commons, Materials Science and Engineering Commons
Comments
This is a manuscript of an article published as Jesche, Anton, R. W. McCallum, S. Thimmaiah, J. L. Jacobs, V. Taufour, A. Kreyssig, R. S. Houk, S. L. Bud’Ko, and P. C. Canfield. "Giant magnetic anisotropy and tunnelling of the magnetization in Li 2 (Li 1− x Fe x) N." Nature Communications 5 (2014): 3333. DOI: 10.1038/ncomms4333. Posted with permission.