Campus Units
Physics and Astronomy, Ames Laboratory
Document Type
Article
Publication Version
Submitted Manuscript
Publication Date
11-19-2020
Journal or Book Title
The Journal of Physical Chemistry Letters
Volume
11
Issue
22
First Page
9725
Last Page
9730
DOI
10.1021/acs.jpclett.0c02887
Abstract
The thermodynamic preference of a foreign atom for adsorption on versus intercalation into a graphitic surface is of fundamental and widespread interest. From an exhaustive first-principles density functional theory investigation for 38 typical elements over the periodic table, we reveal a quasilinear correlation between the Shannon effective ionic radius and the chemical-potential difference for a single atom from adsorption to intercalation at multilayer graphene surfaces. A critical Shannon radius is found to be around 0.10 nm, below (above) which intercalation (adsorption) is more favorable for elements with ionic-like bonding after intercalation. Single atoms with van der Waals-biased bonding show some deviation from the linear relationship, while single atoms for the elements with covalent-like bonding do not favor intercalation relative to adsorption. An energy decomposition analysis indicates that the chemical-potential difference determining the thermodynamic preference of a foreign atom for adsorption versus intercalation results from the competition between the electronic and elastic strain effects.
Copyright Owner
American Chemical Society
Copyright Date
2020
Language
en
File Format
application/pdf
Recommended Citation
Li, Wei; Huang, Li; Tringides, Michael C.; Evans, James W.; and Han, Yong, "Thermodynamic Preference for Atom Adsorption on versus Intercalation into Multilayer Graphene" (2020). Physics and Astronomy Publications. 716.
https://lib.dr.iastate.edu/physastro_pubs/716
Comments
This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in The Journal of Physical Chemistry Letters, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acs.jpclett.0c02887. Posted with permission.