Seed Treatment Effects on Maize Seedlings Coinfected with Fusarium spp. and Pratylenchus penetrans

Thumbnail Image
Date
2016-02-01
Authors
Tylka, G. L.
Munkvold, G. P.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Munkvold, Gary
Professor
Person
Tylka, Gregory
Morrill Professor
Research Projects
Organizational Units
Organizational Unit
Plant Pathology and Microbiology
The Department of Plant Pathology and Microbiology and the Department of Entomology officially merged as of September 1, 2022. The new department is known as the Department of Plant Pathology, Entomology, and Microbiology (PPEM). The overall mission of the Department is to benefit society through research, teaching, and extension activities that improve pest management and prevent disease. Collectively, the Department consists of about 100 faculty, staff, and students who are engaged in research, teaching, and extension activities that are central to the mission of the College of Agriculture and Life Sciences. The Department possesses state-of-the-art research and teaching facilities in the Advanced Research and Teaching Building and in Science II. In addition, research and extension activities are performed off-campus at the Field Extension Education Laboratory, the Horticulture Station, the Agriculture Engineering/Agronomy Farm, and several Research and Demonstration Farms located around the state. Furthermore, the Department houses the Plant and Insect Diagnostic Clinic, the Iowa Soybean Research Center, the Insect Zoo, and BugGuide. Several USDA-ARS scientists are also affiliated with the Department.
Journal Issue
Is Version Of
Versions
Series
Department
Plant Pathology and Microbiology
Abstract

Seedling diseases of maize are caused by a complex of organisms, including fungi in the genus Fusarium. Root-lesion nematodes (Pratylenchus spp.) are common in fields where maize is grown, and they are known to interact with Fusarium spp. in several crops. The objectives of this study were to assess the impacts of seed treatment combinations on maize seedlings coinfected with Pratylenchus penetrans and two Fusarium spp. that cause seedling disease symptoms (Fusarium graminearum and F. verticillioides) and to determine whether there were interactions between P. penetrans and the Fusarium spp. Growth-chamber experiments were conducted with fungicide- or nematicide-treated or untreated maize seed planted in a sand-soil mixture infested with inoculum of either F. graminearum or F. verticillioides. A suspension of 4,000 P. penetrans (mixed stages) was added to the pots at the time of planting. After 30 days, shoot length and fresh and dry shoot and root weights were determined. Total root length and fine root length, root volume, numbers of root tips and forks, and root surface area were measured through analysis of digital images of the root systems. After 42 days, P. penetrans nematodes were extracted and quantified from roots and soil. There were significant effects of the treatments on root health with interactions between Fusarium spp. and P. penetrans. F. graminearum caused the greatest reductions in root and shoot growth, and interactions with P. penetrans were more evident for F. verticillioides than for F. graminearum. Image analysis of root system architecture showed that seed treatment significantly improved root system characteristics. Seed treatments containing the nematicide abamectin in combination with fungicides reduced root infection by P. penetrans and provided the healthiest root system when under attack by the FusariumPratylenchus complex.

Comments

This article is published as da Silva, M. P., G. L. Tylka, and G. P. Munkvold. "Seed Treatment Effects on Maize Seedlings Coinfected with Fusarium spp. and Pratylenchus penetrans." Plant Disease 100, no. 2 (2016): 431-437, doi: 10.1094/PDIS-03-15-0364-RE. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections