Seed Treatment Effects on Maize Seedlings Coinfected with Rhizoctonia solani and Pratylenchus penetrans

Thumbnail Image
Date
2017-06-01
Authors
Tylka, G. L.
Munkvold, G. P.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Munkvold, Gary
Professor
Person
Tylka, Gregory
Morrill Professor
Research Projects
Organizational Units
Organizational Unit
Plant Pathology and Microbiology
The Department of Plant Pathology and Microbiology and the Department of Entomology officially merged as of September 1, 2022. The new department is known as the Department of Plant Pathology, Entomology, and Microbiology (PPEM). The overall mission of the Department is to benefit society through research, teaching, and extension activities that improve pest management and prevent disease. Collectively, the Department consists of about 100 faculty, staff, and students who are engaged in research, teaching, and extension activities that are central to the mission of the College of Agriculture and Life Sciences. The Department possesses state-of-the-art research and teaching facilities in the Advanced Research and Teaching Building and in Science II. In addition, research and extension activities are performed off-campus at the Field Extension Education Laboratory, the Horticulture Station, the Agriculture Engineering/Agronomy Farm, and several Research and Demonstration Farms located around the state. Furthermore, the Department houses the Plant and Insect Diagnostic Clinic, the Iowa Soybean Research Center, the Insect Zoo, and BugGuide. Several USDA-ARS scientists are also affiliated with the Department.
Journal Issue
Is Version Of
Versions
Series
Department
Plant Pathology and Microbiology
Abstract

The roots of maize seedlings typically are attacked by a complex of organisms that includes fungal pathogens and plant-parasitic nematodes but few studies have examined the effects of these organisms in combination. Rhizoctonia solani can be an important component of the seedling disease complex; like other fungi, its effect on the plant may be influenced by the activity of nematodes such as the root-lesion nematode Pratylenchus penetrans. In this study, we assessed the impact of seed treatments, including fungicide–nematicide combinations, on maize seedlings exposed to R. solani and P. penetrans alone or in combination. In growth-chamber and greenhouse experiments, seed treated with various active ingredient combinations were planted in an autoclaved sand-soil mixture with or without inoculum of R. solani. In some treatments, a suspension of P. penetransadults and juveniles was added to the sand-soil mixture. In the greenhouse experiments, infection by R. solani caused dramatic reductions in root length, volume, surface area, and numbers of root tips and root forks, whereas P. penetrans infestation alone reduced only shoot fresh weight. Statistical interactions between the effects of the two organisms were not significant, although fungal infestation significantly reduced the numbers of nematodes extracted from roots. Seed treatments significantly improved most root development variables, and the combination that included four fungicides, thiamethoxam, and abamectin was the best treatment for most variables. Results were similar in the growth-chamber experiments, where R. solani caused significant reductions in nearly all shoot and root development measurements, and seed treatment with sedaxane, alone or combined with abamectin, consistently provided the best results. R. solani was more damaging to seedlings than P. penetrans, and the combination of the two organisms did not cause more damage than R. solani alone. Seed-treatment active ingredients that specifically targeted R. solani (sedaxane) and P. penetrans (abamectin) had large positive effects on seedling health, causing significant improvements in root and shoot growth and development compared with untreated seedlings exposed to these pathogens.

Comments

This article is published as da Silva, M. P., G. L. Tylka, and G. P. Munkvold. "Seed Treatment Effects on Maize Seedlings Coinfected with Rhizoctonia solani and Pratylenchus penetrans." Plant Disease 101, no. 6 (2017): 957-963. doi: 10.1094/PDIS-10-16-1417-RE. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2017
Collections