New methods of removing debris and high-throughput counting of cyst nematode eggs extracted from field soil

Thumbnail Image
Date
2019-10-15
Authors
Legner, Christopher
Tylka, Gregory
Pandey, Santosh
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Person
Tylka, Gregory
Morrill Professor
Research Projects
Organizational Units
Organizational Unit
Plant Pathology and Microbiology
The Department of Plant Pathology and Microbiology and the Department of Entomology officially merged as of September 1, 2022. The new department is known as the Department of Plant Pathology, Entomology, and Microbiology (PPEM). The overall mission of the Department is to benefit society through research, teaching, and extension activities that improve pest management and prevent disease. Collectively, the Department consists of about 100 faculty, staff, and students who are engaged in research, teaching, and extension activities that are central to the mission of the College of Agriculture and Life Sciences. The Department possesses state-of-the-art research and teaching facilities in the Advanced Research and Teaching Building and in Science II. In addition, research and extension activities are performed off-campus at the Field Extension Education Laboratory, the Horticulture Station, the Agriculture Engineering/Agronomy Farm, and several Research and Demonstration Farms located around the state. Furthermore, the Department houses the Plant and Insect Diagnostic Clinic, the Iowa Soybean Research Center, the Insect Zoo, and BugGuide. Several USDA-ARS scientists are also affiliated with the Department.
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Plant Pathology and MicrobiologyElectrical and Computer Engineering
Abstract

The soybean cyst nematode (SCN), Heterodera glycines, is the most damaging pathogen of soybeans in the United States. To assess the severity of nematode infestations in the field, SCN egg population densities are determined. Cysts (dead females) of the nematode must be extracted from soil samples and then ground to extract the eggs within. Sucrose centrifugation commonly is used to separate debris from suspensions of extracted nematode eggs. We present a method using OptiPrep as a density gradient medium with improved separation and recovery of extracted eggs compared to the sucrose centrifugation technique. Also, computerized methods were developed to automate the identification and counting of nematode eggs from the processed samples. In one approach, a high-resolution scanner was used to take static images of extracted eggs and debris on filter papers, and a deep learning network was trained to identify and count the eggs among the debris. In the second approach, a lensless imaging setup was developed using off-the-shelf components, and the processed egg samples were passed through a microfluidic flow chip made from double-sided adhesive tape. Holographic videos were recorded of the passing eggs and debris, and the videos were reconstructed and processed by custom software program to obtain egg counts. The performance of the software programs for egg counting was characterized with SCN-infested soil collected from two farms, and the results using these methods were compared with those obtained through manual counting.

Comments

This article is published as Kalwa U, Legner C, Wlezien E, Tylka G, Pandey S (2019) New methods of removing debris and high-throughput counting of cyst nematode eggs extracted from field soil. PLoS ONE 14(10): e0223386. doi: 10.1371/journal.pone.0223386.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2019
Collections