Campus Units

Plant Pathology and Microbiology, Genetics and Genomics

Document Type

Article

Publication Version

Submitted Manuscript

Publication Date

1-9-2020

Journal or Book Title

bioRxiv

DOI

10.1101/2020.01.08.898825

Abstract

Maize chlorotic mottle virus (MCMV) combines with a potyvirus in maize lethal necrosis disease (MLND), an emerging disease worldwide that often causes catastrophic yield loss. To inform resistance strategies, we characterized the translation initiation mechanism of MCMV. We report that, like other tombusvirids, MCMV RNA contains a cap-independent translation element (CITE) in its 3’ untranslated region (UTR). The MCMV 3’ CITE (MTE) was mapped to nucleotides 4164-4333 in the genomic RNA. SHAPE probing revealed that the MTE is a variant of the panicum mosaic virus-like 3’ CITE (PTE). Like the PTE, electrophoretic mobility shift assays (EMSAs) indicated that eukaryotic translation initiation factor 4E (eIF4E) binds the MTE despite the absence of a m7GpppN cap structure, which is normally required for eIF4E to bind RNA. The MTE interaction with eIF4E suggests eIF4E may be a soft target for engineered resistance to MCMV. Using a luciferase reporter system, mutagenesis to disrupt and restore base pairing revealed that the MTE interacts with the 5’ UTRs of both genomic RNA and the 3’-coterminal subgenomic RNA1 via long-distance kissing stem-loop base pairing to facilitate translation in wheat germ extract and in protoplasts. However, the MTE is a relatively weak stimulator of translation and has a weak, if any, pseudoknot, which is present in the most active PTEs. Most mutations designed to form a pseudoknot decreased translation activity. Mutations in the viral genome that reduced or restored translation prevented and restored virus replication, respectively, in maize protoplasts and in plants. We propose that MCMV, and some other positive strand RNA viruses, favors a weak translation element to allow highly efficient viral RNA synthesis.

Comments

This is a preprint made available through bioRiv at, doi: 10.1101/2020.01.08.898825.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Copyright Owner

The Authors

Language

en

File Format

application/pdf

Share

COinS