trans Regulation of Cap-Independent Translation by a Viral Subgenomic RNA

Thumbnail Image
Date
2006-10-01
Authors
Rakotondrafara, Aurélie
Miller, W. Allen
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Miller, W. Allen
Professor
Research Projects
Organizational Units
Organizational Unit
Plant Pathology and Microbiology
The Department of Plant Pathology and Microbiology and the Department of Entomology officially merged as of September 1, 2022. The new department is known as the Department of Plant Pathology, Entomology, and Microbiology (PPEM). The overall mission of the Department is to benefit society through research, teaching, and extension activities that improve pest management and prevent disease. Collectively, the Department consists of about 100 faculty, staff, and students who are engaged in research, teaching, and extension activities that are central to the mission of the College of Agriculture and Life Sciences. The Department possesses state-of-the-art research and teaching facilities in the Advanced Research and Teaching Building and in Science II. In addition, research and extension activities are performed off-campus at the Field Extension Education Laboratory, the Horticulture Station, the Agriculture Engineering/Agronomy Farm, and several Research and Demonstration Farms located around the state. Furthermore, the Department houses the Plant and Insect Diagnostic Clinic, the Iowa Soybean Research Center, the Insect Zoo, and BugGuide. Several USDA-ARS scientists are also affiliated with the Department.
Journal Issue
Is Version Of
Versions
Series
Department
Plant Pathology and Microbiology
Abstract

Many positive-strand RNA viruses generate 3′-coterminal subgenomic mRNAs to allow translation of 5′-distal open reading frames. It is unclear how viral genomic and subgenomic mRNAs compete with each other for the cellular translation machinery. Translation of the uncapped Barley yellow dwarf virus genomic RNA (gRNA) and subgenomic RNAI (sgRNAI) is driven by the powerful cap-independent translation element (BTE) in their 3′ untranslated regions (UTRs). The BTE forms a kissing stem-loop interaction with the 5′ UTR to mediate translation initiation at the 5′ end. Here, using reporter mRNAs that mimic gRNA and SgRNA1, we show that the abundant sgRNA2 inhibits translation of gRNA, but not sgRNA1, in vitro and in vivo. This trans inhibition requires the functional BTE in the 5′ UTR of sgRNA2, but no translation of sgRNA2 itself is detectable. The efficiency of translation of the viral mRNAs in the presence of sgRNA2 is determined by proximity to the mRNA 5′ end of the stem-loop that kisses the 3′ BTE. Thus, the gRNA and sgRNA1 have "tuned" their expression efficiencies via the site in the 5′ UTR to which the 3′ BTE base pairs. We conclude that sgRNA2 is a riboregulator that switches off translation of replication genes from gRNA while permitting translation of structural genes from sgRNAI. These results reveal (i) a new level of control of subgenomic-RNA gene expression, (ii) a new role for a viral subgenomic RNA, and (iii) a new mechanism for RNA-mediated regulation of translation.

Comments

This article is from Journal of Virology 80 (2006): 10045, doi: 10.1128/JVI.00991-06. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2006
Collections