A Positive-Strand RNA Virus with Three Very Different Subgenomic RNA Promoters

Thumbnail Image
Date
2000-07-01
Authors
Miller, W. Allen
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Miller, W. Allen
Professor
Research Projects
Organizational Units
Organizational Unit
Plant Pathology and Microbiology
The Department of Plant Pathology and Microbiology and the Department of Entomology officially merged as of September 1, 2022. The new department is known as the Department of Plant Pathology, Entomology, and Microbiology (PPEM). The overall mission of the Department is to benefit society through research, teaching, and extension activities that improve pest management and prevent disease. Collectively, the Department consists of about 100 faculty, staff, and students who are engaged in research, teaching, and extension activities that are central to the mission of the College of Agriculture and Life Sciences. The Department possesses state-of-the-art research and teaching facilities in the Advanced Research and Teaching Building and in Science II. In addition, research and extension activities are performed off-campus at the Field Extension Education Laboratory, the Horticulture Station, the Agriculture Engineering/Agronomy Farm, and several Research and Demonstration Farms located around the state. Furthermore, the Department houses the Plant and Insect Diagnostic Clinic, the Iowa Soybean Research Center, the Insect Zoo, and BugGuide. Several USDA-ARS scientists are also affiliated with the Department.
Journal Issue
Is Version Of
Versions
Series
Department
Plant Pathology and Microbiology
Abstract

Numerous RNA viruses generate subgenomic mRNAs (sgRNAs) for expression of their 3*-proximal genes. A major step in control of viral gene expression is the regulation of sgRNA synthesis by specific promoter elements. We used barley yellow dwarf virus (BYDV) as a model system to study transcriptional control in a virus with multiple sgRNAs. BYDV generates three sgRNAs during infection. The sgRNA1 promoter has been mapped previously to a 98-nucleotide (nt) region which forms two stem-loop structures. It was determined that sgRNA1 is not required for BYDV RNA replication in oat protoplasts. In this study, we show that neither sgRNA2 nor sgRNA3 is required for BYDV RNA replication. The promoters for sgRNA2 and sgRNA3 synthesis were mapped by using deletion mutagenesis. The minimal sgRNA2 promoter is approximately 143 nt long (nt 4810 to 4952) and is located immediately downstream of the putative sgRNA2 start site (nt 4809). The minimal sgRNA3 core promoter is 44 nt long (nt 5345 to 5388), with most of the sequence located downstream of sgRNA3 start site (nt 5348). For both promoters, additional sequences upstream of the start site enhanced sgRNA promoter activity. These promoters contrast to the sgRNA1 promoter, in which almost all of the promoter is located upstream of the transcription initiation site. Comparison of RNA sequences and computerpredicted secondary structures revealed little or no homology between the three sgRNA promoter elements. Thus, a small RNA virus with multiple sgRNAs can have very different subgenomic promoters, which implies a complex system for promoter recognition and regulation of subgenomic RNA synthesis.

Comments

This article is from Journal of Virology 74 (2000): 5988, doi: 10.1128/JVI.74.13.5988-5996.2000. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2000
Collections