Pseudomonas syringae BetT Is a Low-Affinity Choline Transporter That Is Responsible for Superior Osmoprotection by Choline over Glycine Betaine

Thumbnail Image
Date
2008-04-01
Authors
Chen, Chiliang
Beattie, Gwyn
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Beattie, Gwyn
Professor
Research Projects
Organizational Units
Organizational Unit
Plant Pathology and Microbiology
The Department of Plant Pathology and Microbiology and the Department of Entomology officially merged as of September 1, 2022. The new department is known as the Department of Plant Pathology, Entomology, and Microbiology (PPEM). The overall mission of the Department is to benefit society through research, teaching, and extension activities that improve pest management and prevent disease. Collectively, the Department consists of about 100 faculty, staff, and students who are engaged in research, teaching, and extension activities that are central to the mission of the College of Agriculture and Life Sciences. The Department possesses state-of-the-art research and teaching facilities in the Advanced Research and Teaching Building and in Science II. In addition, research and extension activities are performed off-campus at the Field Extension Education Laboratory, the Horticulture Station, the Agriculture Engineering/Agronomy Farm, and several Research and Demonstration Farms located around the state. Furthermore, the Department houses the Plant and Insect Diagnostic Clinic, the Iowa Soybean Research Center, the Insect Zoo, and BugGuide. Several USDA-ARS scientists are also affiliated with the Department.
Journal Issue
Is Version Of
Versions
Series
Department
Plant Pathology and Microbiology
Abstract

The plant pathogen Pseudomonas syringae derives better osmoprotection from choline than from glycine betaine, unlike most bacteria that have been characterized. In this report, we identified a betaine/carnitine/choline family transporter (BCCT) in P. syringae pv. tomato strain DC3000 that mediates the transport of choline and acetylcholine. This transporter has a particularly low affinity (Km of 876 μM) and high capacity (Vmax of 80 nmol/min/mg of protein) for choline transport relative to other known BCCTs. Although BetT activity increased in response to hyperosmolarity, BetT mediated significant uptake under low-osmolarity conditions, suggesting a role in transport for both osmoprotection and catabolism. Growth studies with mutants deficient in BetT and other choline transporters demonstrated that BetT was responsible for the superior osmoprotection conferred to P. syringae by choline over glycine betaine when these compounds were provided at high concentrations (>100 μM). These results suggest that P. syringae has evolved to survive in relatively choline-rich habitats, a prediction that is supported by the common association of P. syringae with plants and the widespread production of choline, but genus- and species-specific production of glycine betaine, by plants. Among the three putative BCCT family transporters in Pseudomonas aeruginosa and six in Pseudomonas putida, different transporters were predicted to function based on similarity to Escherichia coli BetT than to P. syringae BetT. Functional P. putida and P. aeruginosa transporters were identified, and their possession of a long C-terminal tail suggested an osmoregulatory function for this tail; this function was confirmed for P. syringaeBetT using deletion derivatives.

Comments

This article is from Journal of Bacteriology 190 (2008): 2717, doi: 10.1128/JB.01585-07. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2008
Collections