Location

La Jolla, CA

Start Date

1980 12:00 AM

Description

The ARPA/AFML Interdisciplinary Program for Quantitative Flaw Definition has demonstrated a number of new techniques for quantitatively sizing flaws, as are reported elsewhere in these proceedings. This paper describes a test bed program to assemble and demonstrate these techniques in a single integrated measurement system that will extend them from the idealized geometries that have been considered thus far to geometries that are a better approximation to those that are found in real parts. Included are discussions of the conceptual design of the system, the detailed design and construction of specific modules, and preliminary experimental results. The basic system consists of a Data General Eclipse S/200 minicomputer, a multi-axis microprocessor controller, a Biomation A/D converter, an immersion tank, and a contour following system with six degrees of freedom. A detailed description of the operation of the various components of the system will be given. Included are discussions of the conceptual design of the system, detailed design and construction of specific modules, and preliminary experimental results.

Book Title

Proceedings of the ARPA/AFML Review of Progress in Quantitative NDE

Chapter

14. Test Beds

Pages

590-598

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Test Bed for Quantitative NDE

La Jolla, CA

The ARPA/AFML Interdisciplinary Program for Quantitative Flaw Definition has demonstrated a number of new techniques for quantitatively sizing flaws, as are reported elsewhere in these proceedings. This paper describes a test bed program to assemble and demonstrate these techniques in a single integrated measurement system that will extend them from the idealized geometries that have been considered thus far to geometries that are a better approximation to those that are found in real parts. Included are discussions of the conceptual design of the system, the detailed design and construction of specific modules, and preliminary experimental results. The basic system consists of a Data General Eclipse S/200 minicomputer, a multi-axis microprocessor controller, a Biomation A/D converter, an immersion tank, and a contour following system with six degrees of freedom. A detailed description of the operation of the various components of the system will be given. Included are discussions of the conceptual design of the system, detailed design and construction of specific modules, and preliminary experimental results.