Progress in Solving the 3-Dimensional Inversion Problem for Eddy Current NDE

Thumbnail Image
Date
1981
Authors
Kincaid, T
Fong, K
Chari, M
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

The eddy current NDE inversion problem is to determine the parameters of a flaw from the measured eddy current sensor impedance changes. Mathematically, this requires finding the transformation which gives the sensor impedance changes in terms of the flaw parameters, and then inverting this transformation. Finding the transformation is called the forward problem, and finding the inverse of the transformation is equivalent to the inversion problem. The principal difficulty in solving the forward problem is finding solutions to Maxwell's equations in the complex geometries involved. This paper describes a solution to the forward problem which is valid for ellipsoidal shaped void flaws in a non-magnetic conductor, and for flaw dimensions such that the incident field variations are at most linear over the region occupied by the flaw.

Comments
Description
Keywords
Citation
DOI
Source
Copyright