Location

La Jolla, CA

Start Date

1-1-1983 12:00 AM

Description

Ultrasonic theories generally predict a scattering amplitude which relates a spherically spreading, far-field scattered wave to an incident plane wave. In ultrasonic immersion measurements, the frequency and angular dependences of the scattering amplitude are convolved with those of the transmitting and receiving transducers and the propagation through the liquid-solid and solid-liquid interfaces. This paper presents a set of approximate corrections for these effects for the cases of angle beam inspection through planar, spherically curved or cylindrically curved surfaces. The primary parameters in the correction are the function D, which corrects for the diffraction effects occurring during a transducer calibration experiment, and the function C, which describes the on-axis pressure variation of the beam. Values of C and D are available in the literature for the case of a piston transducer radiating into an infinite fluid medium. The major portion of this paper is concerned with the extension of those results to the aforementioned two media problems in which mode conversion, refraction, diffraction, and focussing all play interrelated roles. Results of preliminary experiments to test the corrections are also included.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

2A

Chapter

Section 10: Ultrasonic Scattering, Reliability and Penetrating Radiation

Pages

567-586

DOI

10.1007/978-1-4613-3706-5_35

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Analytic Diffraction Corrections to Ultrasonic Scattering Measurements

La Jolla, CA

Ultrasonic theories generally predict a scattering amplitude which relates a spherically spreading, far-field scattered wave to an incident plane wave. In ultrasonic immersion measurements, the frequency and angular dependences of the scattering amplitude are convolved with those of the transmitting and receiving transducers and the propagation through the liquid-solid and solid-liquid interfaces. This paper presents a set of approximate corrections for these effects for the cases of angle beam inspection through planar, spherically curved or cylindrically curved surfaces. The primary parameters in the correction are the function D, which corrects for the diffraction effects occurring during a transducer calibration experiment, and the function C, which describes the on-axis pressure variation of the beam. Values of C and D are available in the literature for the case of a piston transducer radiating into an infinite fluid medium. The major portion of this paper is concerned with the extension of those results to the aforementioned two media problems in which mode conversion, refraction, diffraction, and focussing all play interrelated roles. Results of preliminary experiments to test the corrections are also included.