Location

La Jolla, CA

Start Date

1-1-1983 12:00 AM

Description

An initial study of a technique proposed for the nondestructive testing of metal matrix composites is the subject of this paper. These composites are manufactured in the form of approximately 1/2-mm-diameter “precursor” wires. Larger structures are fabricated by diffusion bonding of lay-ups. Reliable nondestructive quality control indicators of wire integrity have not yet been developed although a number of possibilities are being examined.1 Testing of the precursor wires is difficult because current manufacturing processes produce wires that may be entirely satisfactory but that vary in cross-sectional geometry, in surface properties, and sometimes in the amount of matrix material that is present. Techniques based on observations of wire resistance, surface emissivity, and sound emission signatures are difficult to interpret because of these characteristics. Wire imaging using x-ray or neutron techniques is also difficult because large lengths of wire must be examined with a resolution in the plane of the wire exceeding 50 line pairs per millimeter.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

2A

Chapter

Section 11: Metal Matrix Composites

Pages

663-679

DOI

10.1007/978-1-4613-3706-5_44

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

A Technique for the Nondestructive Detection of Voids and Composition Anomalies in Metal Matrix Composite Wires Using X or γ Rays

La Jolla, CA

An initial study of a technique proposed for the nondestructive testing of metal matrix composites is the subject of this paper. These composites are manufactured in the form of approximately 1/2-mm-diameter “precursor” wires. Larger structures are fabricated by diffusion bonding of lay-ups. Reliable nondestructive quality control indicators of wire integrity have not yet been developed although a number of possibilities are being examined.1 Testing of the precursor wires is difficult because current manufacturing processes produce wires that may be entirely satisfactory but that vary in cross-sectional geometry, in surface properties, and sometimes in the amount of matrix material that is present. Techniques based on observations of wire resistance, surface emissivity, and sound emission signatures are difficult to interpret because of these characteristics. Wire imaging using x-ray or neutron techniques is also difficult because large lengths of wire must be examined with a resolution in the plane of the wire exceeding 50 line pairs per millimeter.