A Technique for the Nondestructive Detection of Voids and Composition Anomalies in Metal Matrix Composite Wires Using X or γ Rays

Thumbnail Image
Date
1983
Authors
Muntz, E.
Sve, C.
Hawkins, G.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

An initial study of a technique proposed for the nondestructive testing of metal matrix composites is the subject of this paper. These composites are manufactured in the form of approximately 1/2-mm-diameter “precursor” wires. Larger structures are fabricated by diffusion bonding of lay-ups. Reliable nondestructive quality control indicators of wire integrity have not yet been developed although a number of possibilities are being examined.1 Testing of the precursor wires is difficult because current manufacturing processes produce wires that may be entirely satisfactory but that vary in cross-sectional geometry, in surface properties, and sometimes in the amount of matrix material that is present. Techniques based on observations of wire resistance, surface emissivity, and sound emission signatures are difficult to interpret because of these characteristics. Wire imaging using x-ray or neutron techniques is also difficult because large lengths of wire must be examined with a resolution in the plane of the wire exceeding 50 line pairs per millimeter.

Comments
Description
Keywords
Citation
DOI
Subject Categories
Copyright
Sat Jan 01 00:00:00 UTC 1983