Scattering by Flaws in a Slab or a Half-Space

Thumbnail Image
Date
1983
Authors
Visscher, William
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

It is the main function of quantitative NDE to detect and to evaluate defects. Some of the most dangerous defects are cracks, especially cracks on or near surfaces. These cracks can be found by scattering ultrasonic waves from them (either bulk waves or surface waves), but up to now there is no theory (at least in the most interesting low-to-intermediate frequency region) which has been implemented to compute scattering from surface or near-surface cracks in 3d. The purpose of the present report is to explain, via a simple scalar example, the principles of a general boundary-integral-representation method which has been used1 to calculate scattering of waves of all polarizations by a 2d surface or subsurface crack. The method is developed for bulk defects and cracks in a slab as well as in a half-space, and is straightforwardly applicable to 3-dimensional problems as well as to 2d ones.

Comments
Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 1983