Effects of Microstructure on the Speed and Attenuation of Elastic Waves: Formal Theory and Simple Approximations

Thumbnail Image
Date
1983
Authors
Gubernatis, J.
Domany, E.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

The sensitivity of the propagation of an elastic wave to changes in the microstructural details of a material is well known.1 In particular, numerous experiments have shown that the attenuation of the wave is sensitive to the inclusions, voids, cracks, grain boundaries, twin boundaries, interphase boundaries, magnetic domain walls, dislocations, substitutional impurities of a material. For attenuation studies in metals, ceramics and polycrystals, three formulas, each for different wavelength regimes, are generally used in the quantitative interpretation of experimental results.1–3 If λ is the wavelength of the elastic wave and is the average grain diameter, then in the Rayleigh regime (λ≫D), α = A13λ4, in the stochastic regime (λ≃D), α = A2λ2, and in the diffusive regime (λ≪D), α = A3/-1. By fitting the data to these formulas, one tries to infer .

Comments
Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 1983