Location

La Jolla, CA

Start Date

1-1-1983 12:00 AM

Description

The purpose of the work described in this paper is the development of an ultrasonic measurement technique which provides a convenient way to detect dilute porosity conditions in materials and to extract certain properties of the flaw distribution which are important in failure prediction. Use has been made entirely of ultrasonic backscatter measurements; thus, the technique differs considerably from other investigations which lead to porosity determinations in that no reliance is placed upon either attenuation measurements or precise ultrasonic velocity measurements [1,2]. The technique thus possesses a distinct advantage for practical implementation, i.e., it is a “one-sided” measurement which does not require ultrasonic echo returns from an opposite face of the sample in order to be useful. At present, the work is limited to dilute porosity concentrations. Reasons for this limitation will become clear in the paper. With additional effort it is expected that this limitation can be removed and the work extended to larger concentrations.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

2A

Chapter

Section 13: Ultrasonic Multiple Scattering

Pages

867-882

DOI

10.1007/978-1-4613-3706-5_55

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Elastic Wave Scattering from Multiple Voids (Porosity)

La Jolla, CA

The purpose of the work described in this paper is the development of an ultrasonic measurement technique which provides a convenient way to detect dilute porosity conditions in materials and to extract certain properties of the flaw distribution which are important in failure prediction. Use has been made entirely of ultrasonic backscatter measurements; thus, the technique differs considerably from other investigations which lead to porosity determinations in that no reliance is placed upon either attenuation measurements or precise ultrasonic velocity measurements [1,2]. The technique thus possesses a distinct advantage for practical implementation, i.e., it is a “one-sided” measurement which does not require ultrasonic echo returns from an opposite face of the sample in order to be useful. At present, the work is limited to dilute porosity concentrations. Reasons for this limitation will become clear in the paper. With additional effort it is expected that this limitation can be removed and the work extended to larger concentrations.