Electric Current Perturbation Calculations for Half-Penny Cracks

Thumbnail Image
Date
1983
Authors
Beissner, R.
Sablik, M.
Teller, C.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

The electric current perturbation (ECP) method1–4 consists of inducing or injecting an electric current flow in the material to be examined and then detecting localized perturbations of the magnetic flux associated with current flow around material defects such as cracks or inclusions. Empirically, ECP data has shown strong correlations among certain signal features and crack size characteristics, and thus promises to be a useful method for quantitative NDE. To aid in the further development of the method, the objectives of the work reported in this paper are (1) to develop a mathematical model of the ECP flux distribution for a half-penny crack, (2) to determine the degree of validity of the model through comparisons with experimental data, and (3) to develop a detailed theory of sizing relationships for half-penny cracks.

Comments
Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 1983