Location

Santa Cruz, CA

Start Date

1-1-1984 12:00 AM

Description

An important class of subsurface cracks occur in nuclear power plant pressure vessels. These pressure vessels, normally made of carbon steel, are protected by a layer of weld material applied directly onto the surface, leaving a highly inhomogeneoue cladding with a rough surface and a very irregular interface. Subsurface cracks originate at the interface between the carbon steel walls of the pressure vessel and the protective cladding layer. The propagation is initially into the carbon steel and eventually into the cladding, and needs to be detected before reaching the surface (Fig. 1). The inhomogeneity of the cladding material and the irregular surfaces pose serious difficulties for ultrasonic detection. These difficulties are less critical for eddy current testing due to the fact that the layered structure of the cladding has more variation in its elastic properties than its electrical conductivity.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

3A

Chapter

Chapter 3: Eddy Currents

Section

Modeling

Pages

511-521

DOI

10.1007/978-1-4684-1194-2_48

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Angular Spectrum Analysis Applied to Undercladding Flaws and Dipole Probes

Santa Cruz, CA

An important class of subsurface cracks occur in nuclear power plant pressure vessels. These pressure vessels, normally made of carbon steel, are protected by a layer of weld material applied directly onto the surface, leaving a highly inhomogeneoue cladding with a rough surface and a very irregular interface. Subsurface cracks originate at the interface between the carbon steel walls of the pressure vessel and the protective cladding layer. The propagation is initially into the carbon steel and eventually into the cladding, and needs to be detected before reaching the surface (Fig. 1). The inhomogeneity of the cladding material and the irregular surfaces pose serious difficulties for ultrasonic detection. These difficulties are less critical for eddy current testing due to the fact that the layered structure of the cladding has more variation in its elastic properties than its electrical conductivity.