Detection and Characterization of Surface Cracks Using Leaky Rayleigh Waves

Thumbnail Image
Date
1985
Authors
Fahr, A.
Sturrock, W.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

A number of ceramics such as silicon nitride, and zirconia are being considered for high temperature structural applications. The primary problem with these ceramics is their wide fracture strength variability. In consequence, non-destructive evaluation techniques are required to ensure their reliable use. The brittle nature of ceramics inhibits the strain energy release at flaws by plastic deformation. As a result, critical flaw size in these materials is small. For example, flaws in the size range of 20–100 µm are considered as “critical” in silicon nitride for engine applications. Surface cracks are particularly important since they are the major source of failure in ceramics (1). These cracks are generated during machining operations and usually consist of arrays of semi-elliptical cracks with random inclination to the surface, but a preferred alignment parallel to the direction of motion of the abrading particles (2).

Comments
Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 1985