Location

La Jolla, CA

Start Date

1-1-1987 12:00 AM

Description

Presently conceived automated metals processing systems have reached a high degree of complexity and incorporate not only control hardware but algorithms based on computer simulations and models of processes and a multiplicity of sensors for monitoring process and geometrical parameters, as well as material properties during the various stages of processing1-4. In such systems, sensors which can nondestructively measure material properties during processing provide information which can be used to verify, simplify and eventually improve the control algorithms. Also by directly providing the quantities of interest, such sensors relax the requirements on other measurements (such as temperature) from which material properties are traditionally inferred. In addition, material property sensors used near the end of the process insure that specifications are being met, regardless of the performance of automated systems upstream. In some cases the availability of new techniques capable of monitoring the evolution of microstructure during initial phases of processing may also help develop new and simpler metallurgical processes resulting in simultaneous improvements of quality and productivity.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

6B

Chapter

Chapter 8: Materials Characterization

Section

Properties

Pages

1377-1393

DOI

10.1007/978-1-4613-1893-4_156

Language

en

File Format

application/pdf

Included in

Metallurgy Commons

Share

COinS
 
Jan 1st, 12:00 AM

Applications of NDE to the Processing of Metals

La Jolla, CA

Presently conceived automated metals processing systems have reached a high degree of complexity and incorporate not only control hardware but algorithms based on computer simulations and models of processes and a multiplicity of sensors for monitoring process and geometrical parameters, as well as material properties during the various stages of processing1-4. In such systems, sensors which can nondestructively measure material properties during processing provide information which can be used to verify, simplify and eventually improve the control algorithms. Also by directly providing the quantities of interest, such sensors relax the requirements on other measurements (such as temperature) from which material properties are traditionally inferred. In addition, material property sensors used near the end of the process insure that specifications are being met, regardless of the performance of automated systems upstream. In some cases the availability of new techniques capable of monitoring the evolution of microstructure during initial phases of processing may also help develop new and simpler metallurgical processes resulting in simultaneous improvements of quality and productivity.