Location

La Jolla, CA

Start Date

1-1-1987 12:00 AM

Description

Conventional measurements in the ultrasonic testing of materials, when used as the basis of a materials characterization procedure, typically rely on one or two piezoelectric transducers operating as source and receiver, attached to a specimen to launch and detect ultrasonic waves in the object to be characterized. Measurements of signal arrival time (or velocity) and amplitude (or attenuation), possibly as a function of frequency, are then correlated with the composition and the macro- and micro-structure of the material, which may include voids, flaws and inclusions distributed through a region of the material. While relative measurements of the time-of-flight and ultrasonic amplitudes do not! present extraordinary measurement challenges, absolute measurements do. It is unfortunate that absolute quantities are often required since they are difficult to obtain reliably with a conventional piezoelectric transducer-based ultrasonic system. For this reason, a considerable effort over the past decade has been undertaken to develop and improve non-contact methods for generating and detecting ultrasonic signals in materials. However, a limiting factor of all the existing non-contact measurement systems is the care required for their use and their reduced sensitivity in comparison to-those utilizing piezoelectric transducers.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

6A

Chapter

Chapter 1: General Techniques—Fundamentals

Section

Acoustic Emission

Pages

311-320

DOI

10.1007/978-1-4613-1893-4_36

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Point-Source/Point-Receiver Materials Testing

La Jolla, CA

Conventional measurements in the ultrasonic testing of materials, when used as the basis of a materials characterization procedure, typically rely on one or two piezoelectric transducers operating as source and receiver, attached to a specimen to launch and detect ultrasonic waves in the object to be characterized. Measurements of signal arrival time (or velocity) and amplitude (or attenuation), possibly as a function of frequency, are then correlated with the composition and the macro- and micro-structure of the material, which may include voids, flaws and inclusions distributed through a region of the material. While relative measurements of the time-of-flight and ultrasonic amplitudes do not! present extraordinary measurement challenges, absolute measurements do. It is unfortunate that absolute quantities are often required since they are difficult to obtain reliably with a conventional piezoelectric transducer-based ultrasonic system. For this reason, a considerable effort over the past decade has been undertaken to develop and improve non-contact methods for generating and detecting ultrasonic signals in materials. However, a limiting factor of all the existing non-contact measurement systems is the care required for their use and their reduced sensitivity in comparison to-those utilizing piezoelectric transducers.