Location

La Jolla, CA

Start Date

1-1-1987 12:00 AM

Description

High performance ceramic materials in advanced technology applications are becoming of increasing importance. As a result, the necessity of finding new quantitative non-destructive evaluation (QNDE) methods for ceramics is becoming increasingly apparent. This paper explores the applicability of proton NMR imaging to the QNDE of ceramic materials. While proton NMR imaging is clearly well developed in the area of medical applications (1), only a few experiments have been performed to determine the applicability of this technique to the analysis of ceramic bodies (2). Compared to the NMR imaging of soft tissues for medical applications, the magnetic interactions of protons in solids or semi-solids make high resolution image generation more difficult. These interactions both broaden the proton NMR lines and shorten the spin-spin relaxation times. As a result, larger encoding magnetic field gradients and faster gradient switching are required of a NMR imaging system to produce high resolution, high signal-to-noise ratio images of solids.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

6A

Chapter

Chapter 1: General Techniques—Fundamentals

Section

X-Ray, CT, and NMR

Pages

449-457

DOI

10.1007/978-1-4613-1893-4_51

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Proton NMR Imaging of Green State Ceramics

La Jolla, CA

High performance ceramic materials in advanced technology applications are becoming of increasing importance. As a result, the necessity of finding new quantitative non-destructive evaluation (QNDE) methods for ceramics is becoming increasingly apparent. This paper explores the applicability of proton NMR imaging to the QNDE of ceramic materials. While proton NMR imaging is clearly well developed in the area of medical applications (1), only a few experiments have been performed to determine the applicability of this technique to the analysis of ceramic bodies (2). Compared to the NMR imaging of soft tissues for medical applications, the magnetic interactions of protons in solids or semi-solids make high resolution image generation more difficult. These interactions both broaden the proton NMR lines and shorten the spin-spin relaxation times. As a result, larger encoding magnetic field gradients and faster gradient switching are required of a NMR imaging system to produce high resolution, high signal-to-noise ratio images of solids.