Location

Williamsburg, VA

Start Date

1-1-1988 12:00 AM

Description

Solid-state bonding methods, e.g., diffusion bonding and pressure welding, are becoming common manufacture and repair techniques for gas turbine engine components. Effective NDE inspection techniques are crucial to the utilization of this approach due to the high stresses on the bond plane associated with jet engine operation. Recently we have examined ultrasonic techniques for assessing bond quality including leaky Rayleigh waves and critical angle longitudinal waves[1], for which the illuminating waves are nearly normal to the bond plane, and longitudinal waves at near grazing incidence to the bond[1]. Based upon preliminary theoretical analyses[1,2] of ultrasonic reflectivity from imperfect interfaces, it was found that the reflection coefficient for both longitudinal and shear waves increases to unity as the incident angle approaches grazing[1]. In contrast, the bond reflection coefficients for near normal incidence can be quite small, depending upon the degree of imperfection of the bond. A second drawback to the first two approaches mentioned is that surface roughness of the blade can cause scattering noise which dominates the signals reflected from the bond. The grazing incidence technique suffers less from these problems since the probe is oriented nearly normal to the surface of the blade and the interaction of the beam with the surface is minimized.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

7B

Chapter

Chapter 7: Characterization of Materials

Section

Bonds and Interfaces

Pages

1327-1334

DOI

10.1007/978-1-4613-0979-6_53

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Ultrasonic NDE Techniques for Integrally Fabricated Rotors

Williamsburg, VA

Solid-state bonding methods, e.g., diffusion bonding and pressure welding, are becoming common manufacture and repair techniques for gas turbine engine components. Effective NDE inspection techniques are crucial to the utilization of this approach due to the high stresses on the bond plane associated with jet engine operation. Recently we have examined ultrasonic techniques for assessing bond quality including leaky Rayleigh waves and critical angle longitudinal waves[1], for which the illuminating waves are nearly normal to the bond plane, and longitudinal waves at near grazing incidence to the bond[1]. Based upon preliminary theoretical analyses[1,2] of ultrasonic reflectivity from imperfect interfaces, it was found that the reflection coefficient for both longitudinal and shear waves increases to unity as the incident angle approaches grazing[1]. In contrast, the bond reflection coefficients for near normal incidence can be quite small, depending upon the degree of imperfection of the bond. A second drawback to the first two approaches mentioned is that surface roughness of the blade can cause scattering noise which dominates the signals reflected from the bond. The grazing incidence technique suffers less from these problems since the probe is oriented nearly normal to the surface of the blade and the interaction of the beam with the surface is minimized.