Location

Williamsburg, VA

Start Date

1-1-1988 12:00 AM

Description

It is well known that microstresses are developed in a composite subjected to a temperature change due to the mismatch in thermal expansion between the fibers and the matrix. The stresses in the matrix can be large enough to cause the matrix to yield and deform plastically. The nonlinear thermal behavior is evidenced by experimentally observed thermal hysteresis in a metal matrix composite under thermal cycling [1]. Obviously, the thermal hysteresis plays an important role on the dimensional stability of the metal matrix composites, especially for graphite fiber reinforced composites.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

7B

Chapter

Chapter 7: Characterization of Materials

Section

Acoustoelasticity, Stress, and Texture

Pages

1357-1364

DOI

10.1007/978-1-4613-0979-6_57

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Acoustoelastic Wave Velocity in Metal Matrix Composite under Thermal Loading

Williamsburg, VA

It is well known that microstresses are developed in a composite subjected to a temperature change due to the mismatch in thermal expansion between the fibers and the matrix. The stresses in the matrix can be large enough to cause the matrix to yield and deform plastically. The nonlinear thermal behavior is evidenced by experimentally observed thermal hysteresis in a metal matrix composite under thermal cycling [1]. Obviously, the thermal hysteresis plays an important role on the dimensional stability of the metal matrix composites, especially for graphite fiber reinforced composites.