Location

La Jolla ,CA

Start Date

1-1-1989 12:00 AM

Description

A continuing project at the Center for NDE in Ames involves the development of models which predict the probability of detecting flaws using a given inspection system.[1] Our general approach as it applies to through-transmission immersion inspections is as follows. With the two transducers to be used in the inspection, a reference experiment is performed to determine relevant information concerning equipment characteristics and transducer efficiencies. This may be done by placing a calibration specimen into the ultrasonic beam and measuring the time-domain electrical signal in the output cable of the receiver. Using models, we then predict how this received electrical signal would be changed if the calibration specimen were removed and unflawed and flawed components were placed into the beam in turn. The two components are assumed to have identical geometries except for a hypothetical flaw of given type, size, and orientation. If the difference between the predicted output signals for the two components is sufficiently large, compared to system noise, then the hypothetical flaw is said to be detectable.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

8A

Chapter

Chapter 1: Fundamentals of Classic Techniques

Section

Elastic Wave Propagation

Pages

157-164

DOI

10.1007/978-1-4613-0817-1_20

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Modeling Ultrasonic Beam Propagation in Graphite Composites

La Jolla ,CA

A continuing project at the Center for NDE in Ames involves the development of models which predict the probability of detecting flaws using a given inspection system.[1] Our general approach as it applies to through-transmission immersion inspections is as follows. With the two transducers to be used in the inspection, a reference experiment is performed to determine relevant information concerning equipment characteristics and transducer efficiencies. This may be done by placing a calibration specimen into the ultrasonic beam and measuring the time-domain electrical signal in the output cable of the receiver. Using models, we then predict how this received electrical signal would be changed if the calibration specimen were removed and unflawed and flawed components were placed into the beam in turn. The two components are assumed to have identical geometries except for a hypothetical flaw of given type, size, and orientation. If the difference between the predicted output signals for the two components is sufficiently large, compared to system noise, then the hypothetical flaw is said to be detectable.