Location

La Jolla ,CA

Start Date

1-1-1989 12:00 AM

Description

This paper describes a novel approach for analyzing ultrasonic signals to permit an experimental determination of the relations between elastic wave phenomena and the properties of a source of sound in a material. It is demonstrated that an adaptive learning system comprising an associative memory can be used to map source and waveform data and vice versa with the auto- and cross-correlation portions of the associative memory. Experiments are described which utilize such an adaptive system, running on a laboratory minicomputer, to process the data from a transient ultrasonic pulse in a plate specimen. In the learning procedure, the system learns from experimental pattern vectors, which are formed from the ultrasonic waveforms and, in this paper, encoded information about the source. The source characteristics are recovered by the recall procedure from detected ultrasonic signals and vice versa. Furthermore, from the discrepancy between the presented and the learned signals, the changes in the wave phenomenon, corresponding, for example, to changes in the boundary conditions of a specimen, can be determined.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

8A

Chapter

Chapter 3: Interpretive Signal and Image Processing

Section

Expert Systems and Adaptive Analysis

Pages

649-656

DOI

10.1007/978-1-4613-0817-1_82

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Experimental Characterization of Ultrasonic Phenomena by a Neural-Like Learning System

La Jolla ,CA

This paper describes a novel approach for analyzing ultrasonic signals to permit an experimental determination of the relations between elastic wave phenomena and the properties of a source of sound in a material. It is demonstrated that an adaptive learning system comprising an associative memory can be used to map source and waveform data and vice versa with the auto- and cross-correlation portions of the associative memory. Experiments are described which utilize such an adaptive system, running on a laboratory minicomputer, to process the data from a transient ultrasonic pulse in a plate specimen. In the learning procedure, the system learns from experimental pattern vectors, which are formed from the ultrasonic waveforms and, in this paper, encoded information about the source. The source characteristics are recovered by the recall procedure from detected ultrasonic signals and vice versa. Furthermore, from the discrepancy between the presented and the learned signals, the changes in the wave phenomenon, corresponding, for example, to changes in the boundary conditions of a specimen, can be determined.