Location

Brunswick, ME

Start Date

1-1-1990 12:00 AM

Description

Non-metallic materials are important in a wide variety of applications in the manufacture of semiconductor components and packages. The nondestructive evaluation of flaws and defects in non-metallic materials including polymers, semiconductors and ceramics used in this industry is a high priority for scientists and engineers involved in the manufacture of microoelectronic circuits. Magnetic resonance imaging techniques are potentially quite powerful tools for this application; however, progress in this area has been slowed significantly by the strong magnetic interactions present in solid materials. Techniques that have been developed for resonance imaging focus on solving the problem of poor resolution caused by intrinsically broad resonance lines in solids through modifications of NMR techniques that artificially narrow the resonance line, or by the use of paramagnetic resonance to investigate signals created only by damage sites together with data reduction methods permitting deconvolution of narrow spectral features from wide lines. These imaging techniques have potential application to such packaging problem areas as the curing phenomena in polymeric materials, adhesion and delamination in composites and sintering of ceramic materials. Promising applications in the semiconductor manufacture process include quantifying the number and location of impurities in wafers, determining the damage levels and degree of annealing needed in the ion implantation process, and ascertaining damage in a semiconductor subjected to such processes as reactive ion etching.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

9B

Chapter

Chapter 6: Electronic and Ceramic Materials

Pages

1101-1108

DOI

10.1007/978-1-4684-5772-8_140

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Electronics Applications of Resonance Imaging

Brunswick, ME

Non-metallic materials are important in a wide variety of applications in the manufacture of semiconductor components and packages. The nondestructive evaluation of flaws and defects in non-metallic materials including polymers, semiconductors and ceramics used in this industry is a high priority for scientists and engineers involved in the manufacture of microoelectronic circuits. Magnetic resonance imaging techniques are potentially quite powerful tools for this application; however, progress in this area has been slowed significantly by the strong magnetic interactions present in solid materials. Techniques that have been developed for resonance imaging focus on solving the problem of poor resolution caused by intrinsically broad resonance lines in solids through modifications of NMR techniques that artificially narrow the resonance line, or by the use of paramagnetic resonance to investigate signals created only by damage sites together with data reduction methods permitting deconvolution of narrow spectral features from wide lines. These imaging techniques have potential application to such packaging problem areas as the curing phenomena in polymeric materials, adhesion and delamination in composites and sintering of ceramic materials. Promising applications in the semiconductor manufacture process include quantifying the number and location of impurities in wafers, determining the damage levels and degree of annealing needed in the ion implantation process, and ascertaining damage in a semiconductor subjected to such processes as reactive ion etching.