Location

Brunswick, ME

Start Date

1-1-1990 12:00 AM

Description

The architecture of conventional (von Neumann) computers, with a single processor and millions of memory units, is inherently inefficient for most applications. In fact, while the processor is extremely busy all the time, only a very small portion of the memory is active. Larger computers are even less efficient, since the ratio of processing power to memory is even smaller and the length of computation is dominated by the ever increasing time required to move data between processor and memory. To overcome this so-called “von Neumann bottleneck,” a new kind of computer, called the “Connection Machine” (CM) has been designed, with a larger number (thousands) of processors, connected in a programmable way, in the framework of a fixed physical wiring scheme [1]. This parallelism allows an opportunity to efficiently reformulate the problem to be studied and modify the approach [2-4]. Currently, the memory available is limited and requires some care in programming. This limitation should decrease with new CM-type machines.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

9A

Chapter

Chapter 1: Fundamentals of Classical Techniques

Section

B: Elastic Wave Propagation

Pages

141-148

DOI

10.1007/978-1-4684-5772-8_16

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Use of the Connection Machine to Study Ultrasonic Wave Propagation in Materials

Brunswick, ME

The architecture of conventional (von Neumann) computers, with a single processor and millions of memory units, is inherently inefficient for most applications. In fact, while the processor is extremely busy all the time, only a very small portion of the memory is active. Larger computers are even less efficient, since the ratio of processing power to memory is even smaller and the length of computation is dominated by the ever increasing time required to move data between processor and memory. To overcome this so-called “von Neumann bottleneck,” a new kind of computer, called the “Connection Machine” (CM) has been designed, with a larger number (thousands) of processors, connected in a programmable way, in the framework of a fixed physical wiring scheme [1]. This parallelism allows an opportunity to efficiently reformulate the problem to be studied and modify the approach [2-4]. Currently, the memory available is limited and requires some care in programming. This limitation should decrease with new CM-type machines.