Location

Brunswick, ME

Start Date

1-1-1990 12:00 AM

Description

Ceramic matrix composites presently being developed are potentially well suited for high temperature structural applications. The character of the fiber-matrix bond plays a significant role in determining the fracture toughness of the material and thus its performance. Increased toughness is achieved by phenomena such as interface debonding and fiber slip or pull-out, which improve material toughness by increasing the energy required to propagate a crack [1]. In a bond that is too weak, the toughening mechanisms are not significant. However, a bond that is too strong permits a crack to propagate directly through a fiber-matrix interface without being significantly affected, resulting in brittle fracture. As a result, care is required in the manufacture of these materials to achieve optimum fiber-matrix bonding [2]. The objective of this work is to develop and evaluate techniques to nondestructively characterize the fiber-matrix interface bonds. The techniques being investigated include ultrasonic velocity and attenuation, acousto-ultrasonic response, and internal dynamic mechanical damping.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

9B

Chapter

Chapter 7: Engineered Materials

Section

Properties of Composites

Pages

1425-1431

DOI

10.1007/978-1-4684-5772-8_183

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Acoustical and Dynamic Mechanical Characterization of Fiber-Matrix Interface Bonds in Ceramic Composites

Brunswick, ME

Ceramic matrix composites presently being developed are potentially well suited for high temperature structural applications. The character of the fiber-matrix bond plays a significant role in determining the fracture toughness of the material and thus its performance. Increased toughness is achieved by phenomena such as interface debonding and fiber slip or pull-out, which improve material toughness by increasing the energy required to propagate a crack [1]. In a bond that is too weak, the toughening mechanisms are not significant. However, a bond that is too strong permits a crack to propagate directly through a fiber-matrix interface without being significantly affected, resulting in brittle fracture. As a result, care is required in the manufacture of these materials to achieve optimum fiber-matrix bonding [2]. The objective of this work is to develop and evaluate techniques to nondestructively characterize the fiber-matrix interface bonds. The techniques being investigated include ultrasonic velocity and attenuation, acousto-ultrasonic response, and internal dynamic mechanical damping.