Location

Brunswick, ME

Start Date

1-1-1990 12:00 AM

Description

Advanced materials for use in the aerospace industry are presently being developed and applied at an astonishing rate. This pace is driven by the need for materials that can withstand higher operating temperatures and loads, yet remain cost competitive. As the performance demands of aerospace materials push nearer and nearer the theoretical limit for strength, the allowed flaw size in traditional materials is driven smaller, making quality control more stringent. This demand for improved performance characteristics is also generating strong interest in other materials such as: exotic alloys, ceramics and reinforced composites. A need exists for characterizing these advanced materials for composition variations, flaw content, inclusions and porosity using nondestructive techniques at all stages of the materials life cycle. These stages include initial characterization of a new material, process control during the manufacturing of the material, quality control of incoming material, and the in service inspection of the final part.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

9B

Chapter

Chapter 7: Engineered Materials

Section

Properties of Composites

Pages

1465-1471

DOI

10.1007/978-1-4684-5772-8_188

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

X-Ray Measurement of Material Properties in Composites

Brunswick, ME

Advanced materials for use in the aerospace industry are presently being developed and applied at an astonishing rate. This pace is driven by the need for materials that can withstand higher operating temperatures and loads, yet remain cost competitive. As the performance demands of aerospace materials push nearer and nearer the theoretical limit for strength, the allowed flaw size in traditional materials is driven smaller, making quality control more stringent. This demand for improved performance characteristics is also generating strong interest in other materials such as: exotic alloys, ceramics and reinforced composites. A need exists for characterizing these advanced materials for composition variations, flaw content, inclusions and porosity using nondestructive techniques at all stages of the materials life cycle. These stages include initial characterization of a new material, process control during the manufacturing of the material, quality control of incoming material, and the in service inspection of the final part.