Location

Brunswick, ME

Start Date

1-1-1990 12:00 AM

Description

Finite element (FE) studies of energy/material interactions associated with the nondestructive evaluation (NDE) of materials have not only yielded useful information concerning the physics of new NDE phenomena [1] but also provided “test-beds” for the simulation of NDE situations too difficult to replicate in a laboratory environment [2]. FE code has been developed for the analysis of those NDE processes governed by elliptic [3], parabolic [4] and hyperbolic [5] partial differential equation (PDE) types taking advantage of axisymmetry wherever possible in order to conserve computer capacity. In those situations requiring fine spatial and/or temporal discretization, it has been found that the FE code makes excessive demands on even the best computer resources. Examples of this situation include the finite element modeling of the remote field effect in large diameter pipelines [6] and the simulation of ultrasonic wave propagation through large structures [7].

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

9A

Chapter

Chapter 1: Fundamentals of Classical Techniques

Section

C: Eddy Currents

Pages

303-310

DOI

10.1007/978-1-4684-5772-8_37

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Boundary Integral and Finite Element Simulation of Electromagnetic NDE Phenomena

Brunswick, ME

Finite element (FE) studies of energy/material interactions associated with the nondestructive evaluation (NDE) of materials have not only yielded useful information concerning the physics of new NDE phenomena [1] but also provided “test-beds” for the simulation of NDE situations too difficult to replicate in a laboratory environment [2]. FE code has been developed for the analysis of those NDE processes governed by elliptic [3], parabolic [4] and hyperbolic [5] partial differential equation (PDE) types taking advantage of axisymmetry wherever possible in order to conserve computer capacity. In those situations requiring fine spatial and/or temporal discretization, it has been found that the FE code makes excessive demands on even the best computer resources. Examples of this situation include the finite element modeling of the remote field effect in large diameter pipelines [6] and the simulation of ultrasonic wave propagation through large structures [7].