Eddy Current Image Processing for Crack Size Characterization

Thumbnail Image
Date
1990
Authors
McCary, R.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

Estimation of crack length and depth is of considerable interest to the eddy current testing community, due to their importance in determining the relative severity of the flaw. A paper presented at the INTERMAG-MMM conference in July, 1988 proposes an automated method for estimation using eddy current image data where the material being tested is magnetic [1]. These estimates are within two to one of the correct results over a wide range of EDM slot sizes and aspect ratios, provided the slot length is at least half the mean coil radius. A second motivation for the present work is to provide a benchmark against which other techniques, or variations such as lower sampling density or different flying heights (fixed lift-off), may be measured. Since there is no obvious reason why the same methodology should not work for non-magnetic material tests, seven different sets of data on the twelve EDM slots in a calibration block were run thru a similar algorithm. A brief description of the algorithm will be given, then the data sets will be described, and the results (including some processing variations) discussed.

Comments
Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 1990