Location

La Jolla, CA

Start Date

1-1-1993 12:00 PM

Description

Ion beam material modification is currently being used for several important technological applications such as semiconductor doping [1], surface modification of metals [2], cold etching [1], micro machining [1] and material analysis [3]. Ion beam processing has many advantages [4]. The speed, homogeneity and reproducibility of the doping process are easily controlled. Tight control of the number of doping atoms is possible. Low purity dopants can be used. The target can be kept at low temperatures allowing for low melting temperature materials to be modified. Simple masking methods can be employed and doping can be performed through passive films. Low penetration depths can be achieved and multiple implantations can produce varied doping profiles. Devices with small dimensions can be manufactured due to the small size of the ion beam. Since ion implantation is not an equilibrium process, equilibrium solubility limits of the ion species in the target material can be exceeded. There are some disadvantages of this type of doping process. Damage is caused to the crystal structure creating defects. Implantation is limited to near-surface regions and theoretical profiles can be difficult to obtain due to effects of channeling and diffusion [5].

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

12A

Chapter

Chapter 4: Sensors and New Techniques

Section

Ultrasonic and Acoustic Sensors

Pages

995-1002

DOI

10.1007/978-1-4615-2848-7_127

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 PM

Acoustic wave studies during fast ion beam interactions with solds

La Jolla, CA

Ion beam material modification is currently being used for several important technological applications such as semiconductor doping [1], surface modification of metals [2], cold etching [1], micro machining [1] and material analysis [3]. Ion beam processing has many advantages [4]. The speed, homogeneity and reproducibility of the doping process are easily controlled. Tight control of the number of doping atoms is possible. Low purity dopants can be used. The target can be kept at low temperatures allowing for low melting temperature materials to be modified. Simple masking methods can be employed and doping can be performed through passive films. Low penetration depths can be achieved and multiple implantations can produce varied doping profiles. Devices with small dimensions can be manufactured due to the small size of the ion beam. Since ion implantation is not an equilibrium process, equilibrium solubility limits of the ion species in the target material can be exceeded. There are some disadvantages of this type of doping process. Damage is caused to the crystal structure creating defects. Implantation is limited to near-surface regions and theoretical profiles can be difficult to obtain due to effects of channeling and diffusion [5].