Location

La Jolla, CA

Start Date

1-1-1993 12:00 PM

Description

Hot Isostatic Pressing (HIP) is an increasingly important near net shape process for producing fully dense components from powders [1]. It involves filling a preshaped metal canister with alloy powder, followed by evacuation, and sealing. The can is then placed in a HIP (a furnace that can be pressurized to ~200MPa with an inert gas such as argon). The can is subjected to a heating/pressurization cycle that softens and compacts the powder particles to a fully dense mass and a shape determined by the can shape, the powders initial packing and the thermal-mechanical cycle imposed [2]. Today, many metals, alloys and intermetallics are processed this way (including nickel based superalloys, titanium alloys, NiA1, etc.) and it is increasingly used to produce metal matrix composites.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

12A

Chapter

Chapter 4: Sensors and New Techniques

Section

Electromagnetic Sensors

Pages

1047-1054

DOI

10.1007/978-1-4615-2848-7_134

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 PM

Factors affecting the performance of eddy current densification sensors

La Jolla, CA

Hot Isostatic Pressing (HIP) is an increasingly important near net shape process for producing fully dense components from powders [1]. It involves filling a preshaped metal canister with alloy powder, followed by evacuation, and sealing. The can is then placed in a HIP (a furnace that can be pressurized to ~200MPa with an inert gas such as argon). The can is subjected to a heating/pressurization cycle that softens and compacts the powder particles to a fully dense mass and a shape determined by the can shape, the powders initial packing and the thermal-mechanical cycle imposed [2]. Today, many metals, alloys and intermetallics are processed this way (including nickel based superalloys, titanium alloys, NiA1, etc.) and it is increasingly used to produce metal matrix composites.