Relationships Between Ultrasonic Noise and Macrostructure of Titanium Alloys

Thumbnail Image
Date
1993
Authors
Han, K. Y.
Thompson, R. Bruce
Margetan, Frank
Rose, James
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Margetan, Frank
Associate Scientist
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

The complex microstructure of two-phase titanium alloys can produce considerable ultrasonic backscattering noise. The noise introduces problems in detecting small flaws, such as hard-alpha inclusions, by forming a background which can mask the flaw signals. Therefore better understanding of grain noise is required to quantify and increase the detectability of the small flaws. As an aid to understanding the grain noise, an independent scattering model was constructed and studied during last two years by Margetan and Thompson. In that model for the backscattered noise generated by a tone burst, the grain noise is described by following equation (1) N(t)=FOM×M(t) where N(t) is the rms grain noise, FOM is a material characteristic parameter and M is a factor that depends on the detailed description of the experimental configuration as well as the ultrasonic attenuation. The argument, t, is the time delay at which the noise is observed and can be related to a spatial position within the material. Since the model gives an explicit functional form for M, it is possible to use Eq. (1) to infer the FOM from a measurement of N(t).1 Figure 1 presents the results of such a measurement in which the noise was observed, through each of three orthogonal sides of a set of four Ti-6246 specimens, whose history of heat treatment is summarized in Table 1.2 The FOM’s of each of specimens A1, A2 and B2 varied by an order of magnitude, depending on the side of the measurement. However, on specimen C1, which was annealed above the beta transus of 1775 °F, the noise was nearly isotropic. The purpose of this paper is to understand the origin of this anisotropy.

Comments
Description
Keywords
Citation
DOI
Keywords
Copyright
Fri Jan 01 00:00:00 UTC 1993