Application-Directed Modeling of Radiation and Prpagation of Elastic Waves in Anisotropic Media: GPSS and OPOSSM

Thumbnail Image
Date
1995
Authors
Spies, M.
Walte, F.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

In ultrasonic nondestructive testing use is made of the physical properties of elastic waves in solids in order to detect defects and material inhomogeneities. Difficulties in testing anisotropic materials are due to the direction dependence of the ultrasonic velocities and to the inherent effects of beam divergence and beam distortion. Based on a theory of elastic wave propagation in transversely isotropic media [1], the Generalized Point-Source-Synthesis-method (GPSS) has been developed to model the radiation, propagation and scattering of elastic waves as generated by ultrasonic transducers in these media [2]. The method accounts for the three-dimensionality and the vectorial character of anisotropic wave phenomena and is particularly useful in view of application-directed modeling at low computation times. A specifically interesting outcome is OPoSSM (‘Optimization by Point-Source-Synthesis-Modeling’), which allows optimized dimensioning and build-up of complex transducers according to their selected field of application. In this contribution, results are presented for austenitic weld material and fiber composites, covering echo dynamic curves — in comparison with experimental results — for commercial transducers. Furthermore, OPoSSM-results on optimized TR-array-probes are presented as well as snapshots of transducer-generated wavefronts, impressively illustrating the modeling of time-dependent rf-signals.

Comments
Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 1995