Location

Snowmass Village, CO

Start Date

1-1-1995 12:00 AM

Description

This study demonstrates that an in situ nondestructive, ultrasonic surface wave technique can successfully detect the onset and extent of matrix cracking fatigue damage in a titanium metal matrix composite (MMC). A quasi-isotropic [0/±45/90]s SCS-6/Timetal®21S MMC material was used for room temperature fatigue tests and the resultant matrix cracking damage was ultrasonically monitored in situ as a function of cycle count. Damage accumulation in the material was successfully correlated with decreases in ultrasonic pitch catch amplitude and verified through the use of immersion ultrasonic C-scans and metallographic techniques. Damage initiation and progression was tracked through the use of complementary nondestructive and destructive techniques. The in situ surface wave data show that the higher the fatigue stress level, the more quickly damage occurs; conversely, the lower the stress level, the slower the damage initiation. The in situ surface wave technique proved to be more sensitive to the accumulating damage than standard load-displacement modulus measurements. The surface wave technique also indicated a change in material properties after only one fatigue cycle. The data acquired show that a better understanding of damage initiation and accumulation can be gained using the in situ surface wave technique in comparison to current load-displacement modulus measurements.

Volume

14B

Chapter

Chapter 5: Engineered Materials

Section

Composite Defects

Pages

1319-1326

DOI

10.1007/978-1-4615-1987-4_168

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Evaluation of Mechanical Fatigue Damage Accumulation in Metal Matrix Composites Using Ultrasonic Surface Waves

Snowmass Village, CO

This study demonstrates that an in situ nondestructive, ultrasonic surface wave technique can successfully detect the onset and extent of matrix cracking fatigue damage in a titanium metal matrix composite (MMC). A quasi-isotropic [0/±45/90]s SCS-6/Timetal®21S MMC material was used for room temperature fatigue tests and the resultant matrix cracking damage was ultrasonically monitored in situ as a function of cycle count. Damage accumulation in the material was successfully correlated with decreases in ultrasonic pitch catch amplitude and verified through the use of immersion ultrasonic C-scans and metallographic techniques. Damage initiation and progression was tracked through the use of complementary nondestructive and destructive techniques. The in situ surface wave data show that the higher the fatigue stress level, the more quickly damage occurs; conversely, the lower the stress level, the slower the damage initiation. The in situ surface wave technique proved to be more sensitive to the accumulating damage than standard load-displacement modulus measurements. The surface wave technique also indicated a change in material properties after only one fatigue cycle. The data acquired show that a better understanding of damage initiation and accumulation can be gained using the in situ surface wave technique in comparison to current load-displacement modulus measurements.