Location

Snowmass Village, CO

Start Date

1-1-1995 12:00 AM

Description

Earlier we have described the various uses of infrared line scanner based thermal nondestructive testing equipment [1]. Time constants of measurements made with these kind of equipment are very suitable for testing carbon fiber composites. Scanning a line heat source over a sample surface causes a nonuniform temperature distribution in the sample. In addition to the heat flow normal to the surface, lateral heat flow exists in the surface plane. In the case of carbon fiber composites with a specific oriented structure, the surface temperature distributions depend on the direction where the line source moves. Generally, this is true of any sample having anisotropic thermal conductivity. In oriented carbon fiber composites the bulk thermal conductivity can be considered anisotropic, because the heat transfer in the composite is different in the direction of the fibers compared to perpendicular directions [2,3]. Varis et al. have discussed these phenomenon briefly with the testing of carbon fiber tubes using numerical methods [4]. Here, we represent a more detailed numerical analysis of the effects of line heating on a sample having anisotropic thermal conductivity.

Volume

14B

Chapter

Chapter 5: Engineered Materials

Section

Composite Defects

Pages

1341-1345

DOI

10.1007/978-1-4615-1987-4_171

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

A Numerical Study on Temperature Distribution of Line Heated Anisotropic Carbon Fiber Composites

Snowmass Village, CO

Earlier we have described the various uses of infrared line scanner based thermal nondestructive testing equipment [1]. Time constants of measurements made with these kind of equipment are very suitable for testing carbon fiber composites. Scanning a line heat source over a sample surface causes a nonuniform temperature distribution in the sample. In addition to the heat flow normal to the surface, lateral heat flow exists in the surface plane. In the case of carbon fiber composites with a specific oriented structure, the surface temperature distributions depend on the direction where the line source moves. Generally, this is true of any sample having anisotropic thermal conductivity. In oriented carbon fiber composites the bulk thermal conductivity can be considered anisotropic, because the heat transfer in the composite is different in the direction of the fibers compared to perpendicular directions [2,3]. Varis et al. have discussed these phenomenon briefly with the testing of carbon fiber tubes using numerical methods [4]. Here, we represent a more detailed numerical analysis of the effects of line heating on a sample having anisotropic thermal conductivity.