Location

Snowmass Village, CO

Start Date

1-1-1995 12:00 AM

Description

Magnetic Resonance Imaging (MRI), with its unique capability to image soft tissues, has become one of the most powerful nondestructive diagnostic tools in medicine. MRI is still a developing methodology in non-medical nondestructive evaluation (NDE); this is because solids with their broader nuclear magnetic resonance (NMR) linewidths are more difficult to image than biological tissue. However, recently MRI has been attracting increasing interest in a number of areas where the NMR linewidth is not as serious a problem. These include fluid flow determination in materials including porous media [1], detecting defects in ceramics still in the green (unfired) state [2], and the evaluation of polymers such as rubber and other elastomers [3]. Superconducting Quantum Interference Devices, or SQUIDs, with their great sensitivity and broad bandwidth have the potential to enhance MRI in both medical and non-medical applications.

Volume

14B

Chapter

Chapter 6: Material Properties

Section

Biomedical Materials

Pages

1749-1756

DOI

10.1007/978-1-4615-1987-4_224

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Magnetic Resonance Imaging and Spectroscopy using Squid Detection

Snowmass Village, CO

Magnetic Resonance Imaging (MRI), with its unique capability to image soft tissues, has become one of the most powerful nondestructive diagnostic tools in medicine. MRI is still a developing methodology in non-medical nondestructive evaluation (NDE); this is because solids with their broader nuclear magnetic resonance (NMR) linewidths are more difficult to image than biological tissue. However, recently MRI has been attracting increasing interest in a number of areas where the NMR linewidth is not as serious a problem. These include fluid flow determination in materials including porous media [1], detecting defects in ceramics still in the green (unfired) state [2], and the evaluation of polymers such as rubber and other elastomers [3]. Superconducting Quantum Interference Devices, or SQUIDs, with their great sensitivity and broad bandwidth have the potential to enhance MRI in both medical and non-medical applications.