Location

Seattle, WA

Start Date

1-1-1996 12:00 AM

Description

A neural network with binary outputs is presented to determine the angle and the depth of a surface-breaking crack from ultrasonic backscattering data. The estimation procedure is divided into two steps: (1) The angle of the crack is estimated in the range from 10 to 70 degrees with a precision of 5 degrees. To improve the accuracy of estimation, information on the integral of the backscattered signal is utilized. (2) When the angle of the crack has been estimated, the depth of the crack is determined with a precision of 0.5mm in the range from 2.0mm to 4.0mm. This determination is achieved by employing sets of neural networks corresponding to various angles of the crack.

Volume

15A

Chapter

Chapter 3: Signal Processing and Image Analysis

Section

Signal Processing

Pages

797-804

DOI

10.1007/978-1-4613-0383-1_104

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Crack Parameter Characterization by a Neural Network

Seattle, WA

A neural network with binary outputs is presented to determine the angle and the depth of a surface-breaking crack from ultrasonic backscattering data. The estimation procedure is divided into two steps: (1) The angle of the crack is estimated in the range from 10 to 70 degrees with a precision of 5 degrees. To improve the accuracy of estimation, information on the integral of the backscattered signal is utilized. (2) When the angle of the crack has been estimated, the depth of the crack is determined with a precision of 0.5mm in the range from 2.0mm to 4.0mm. This determination is achieved by employing sets of neural networks corresponding to various angles of the crack.