Numerical Model of Elastic Wave Interactions with a Diffusion Bond

Thumbnail Image
Date
1996
Authors
Saffari, Nader
Zhou, Jianwei
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

Solid state bonds are being extensively developed and used in aerospace structures. As with any other bonding technology, a reliable method for estimating bond strength is needed in order to establish confidence levels in the process routes and the finished bonded products. Ultrasonic nondestructive evaluation (NDE) methods are currently being investigated for detection and characterisation of anomalies at diffusion bonds between similar or dissimilar metallic layers [1], There is large gap in the understanding of the nature and behaviour of imperfect bonds. These are diffusion bonds which do not show up as good reflectors of ultrasonic energy, but at the same time have very low bond strengths. A purely experimental approach to developing an NDE method is often hampered by the difficulties in fabricating samples with controlled defects, and other experimental uncertainties. The objectives of this study are thus to develop a computer model to determine whether ultrasound could be used for characterisation of imperfections at a diffusion bond, and what would be the optimum set-up for obtaining the most reliable information about the condition of the bond line.

Comments
Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 1996