Location

Seattle, WA

Start Date

1-1-1996 12:00 AM

Description

The superconducting quantum interference device (SQUID) holds great promise for electromagnetic nondestructive evaluation (NDE) because it offers high sensitivity -permitting high lift-offs or very small excitation signals — and maintains this sensitivity from DC to high frequencies [1]. In eddy current NDE, this allows an induction coil to comprise only a few turns, or even a single filament, without a high permeability core, and makes forward modeling and inverse processing easier, since the induction source is well defined and the SQUID itself closely approximates an ideal sensor. However, the SQUID also has practical drawbacks, including the need for cryogenic temperatures and for differential configurations for measurements in environmental fields. Until very recently, almost all SQUID NDE systems were based on low temperature superconductors (LTSs), but the first measurements with high temperature superconductor (HTS) SQUIDs are now being reported [2–4].

Volume

15A

Chapter

Chapter 4: NDE Sensors

Section

Electromagnetic Probes (EC, Remote Field, MOI, SQUID)

Pages

1151-1158

DOI

10.1007/978-1-4613-0383-1_150

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Advances in the Theory and Practice of Squid NDE

Seattle, WA

The superconducting quantum interference device (SQUID) holds great promise for electromagnetic nondestructive evaluation (NDE) because it offers high sensitivity -permitting high lift-offs or very small excitation signals — and maintains this sensitivity from DC to high frequencies [1]. In eddy current NDE, this allows an induction coil to comprise only a few turns, or even a single filament, without a high permeability core, and makes forward modeling and inverse processing easier, since the induction source is well defined and the SQUID itself closely approximates an ideal sensor. However, the SQUID also has practical drawbacks, including the need for cryogenic temperatures and for differential configurations for measurements in environmental fields. Until very recently, almost all SQUID NDE systems were based on low temperature superconductors (LTSs), but the first measurements with high temperature superconductor (HTS) SQUIDs are now being reported [2–4].