Characterization of Composite Materials from Temporal Thermal Response

Thumbnail Image
Date
1996
Authors
Emeric, P.
Winfree, W.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

Fiber reinforced composite materials are increasingly used in applications that require high strength to weight ratio and resistance to high temperatures. Recent works specifically concerning thermal transfer have led to a better understanding of the relationship between constituents and the relative thermal properties. One focus is to obtain the effective thermal properties of an equivalent homogeneous medium that gives the same averaged thermal response as the composite [1, 2, 3]. Another one is the interfacial thermal barrier effect in heat conduction in heterogeneous media [4, 5, 6]. In the present work, an experimental setup used for the nondestructive characterization of multilayered flat plates [7] was modified to image the thermal response of fiber reinforced composite materials. The technique consists in rastering a laser beam, the heat source, at the surface of the specimens. At each point, the temperature is measured as a function of time. A multi-image, composed of the temperature time history at each pixel, is obtained. A model predicting the temperature response of such composite materials is presented and compared to the experimental data.

Comments
Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 1996