Survey of Ultrasonic Grain Noise Characteristics in Jet Engine Titanium

Thumbnail Image
Date
1996
Authors
Yalda, I.
Margetan, Frank
Han, K. Y.
Thompson, R. Bruce
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Margetan, Frank
Associate Scientist
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Series
Review of Progress in Quantitative Nondestructive Evaluation
Center for Nondestructive Evaluation

Begun in 1973, the Review of Progress in Quantitative Nondestructive Evaluation (QNDE) is the premier international NDE meeting designed to provide an interface between research and early engineering through the presentation of current ideas and results focused on facilitating a rapid transfer to engineering development.

This site provides free, public access to papers presented at the annual QNDE conference between 1983 and 1999, and abstracts for papers presented at the conference since 2001.

Department
Abstract

In ultrasonic inspections of titanium billets and forgings, grain noise echoes are routinely observed. These arise from the scattering of the incident sound beam by the metal microstructure, and can limit the detection of small or subtle defects. We report on a survey of grain noise characteristics in fourteen billet and forging specimens supplied by aircraft engine manufacturers. All specimens were examined in a similar manner using a 5-MHz focussed transducer, with pulse/echo noise measurements made through three orthogonal sides of each specimen. Emphasis is placed on describing two related probability density functions (PDF’s) which characterize aspects of the backscattered noise seen in a scanning experiment. The first PDF describes the RF noise voltages seen at a fixed observation time t; the second describes the gated peak-to-peak noise voltages seen for time gates of various durations. The PDF for the RF noise voltages is expected to be Gaussian if a large number (>10) of grains contribute appreciably to the noise at time t [1], but non-Gaussian behavior is seen in some specimens. The use of K-distributions to describe the non-Gaussian cases is examined. This work is in support of efforts described in a companion article [2] to develop methods for predicting gated peak noise (GPN) distributions.

Comments
Description
Keywords
Citation
DOI
Keywords
Copyright
Mon Jan 01 00:00:00 UTC 1996