Location

Seattle, WA

Start Date

1-1-1996 12:00 AM

Description

In the inspection of titanium material intended for use in aircraft engines, a number of unusual phenomena are observed, including significant fluctuations of the amplitude and phase of back-surface echoes and of the amplitudes of pulse-echo signals from nominally identical flaws[1]. Practical implications include a broadening of the probability of detection curves and difficulties in determining the ultrasonic attenuation, a parameter used in interpreting flaw response data. Incorrect determination of attenuation can lead to errors in distance-gain corrections and hence in estimates of the magnitude of the flaw response. In this paper, we report experiments designed to elucidate the mechanisms responsible for these signal fluctuations.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

15B

Chapter

Chapter 6: Material Properties

Section

Ultrasonic Backscatter and Attenuation

Pages

1525-1532

DOI

10.1007/978-1-4613-0383-1_199

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Ultrasonic Attenuation Measurements in Jet-Engine Titanium Alloys

Seattle, WA

In the inspection of titanium material intended for use in aircraft engines, a number of unusual phenomena are observed, including significant fluctuations of the amplitude and phase of back-surface echoes and of the amplitudes of pulse-echo signals from nominally identical flaws[1]. Practical implications include a broadening of the probability of detection curves and difficulties in determining the ultrasonic attenuation, a parameter used in interpreting flaw response data. Incorrect determination of attenuation can lead to errors in distance-gain corrections and hence in estimates of the magnitude of the flaw response. In this paper, we report experiments designed to elucidate the mechanisms responsible for these signal fluctuations.