Location

Seattle, WA

Start Date

1-1-1996 12:00 AM

Description

For structures with large surface areas, a full integrity evaluation can be a time-consuming operation. Lamb wave techniques allow this evaluation to be performed with waves propagating along one dimension of the inspection area while the probing transducers are moved in the perpendicular dimension, giving information about the presence of flaws within the entire scanned area. For riveted structures the scattering of the Lamb waves from the rivets is often the dominant feature in the measured response, masking the more subtle effects of Lamb wave interactions with the flaws of interest [1]. In this paper we consider the scattering of lowest mode symmetric and antisymmetric Lamb waves from model rivets, and derive analytic expressions for the scattered fields. With solutions of this type the disruptive effects of the rivets can be “processed out” of measured data in order to expose the signals which are due to the flaws in the structure.

Volume

15A

Chapter

Chapter 1: Standard Techniques

Section

UT Guided Wave Propagation

Pages

209-216

DOI

10.1007/978-1-4613-0383-1_26

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Lamb Wave Scattering from Rivets

Seattle, WA

For structures with large surface areas, a full integrity evaluation can be a time-consuming operation. Lamb wave techniques allow this evaluation to be performed with waves propagating along one dimension of the inspection area while the probing transducers are moved in the perpendicular dimension, giving information about the presence of flaws within the entire scanned area. For riveted structures the scattering of the Lamb waves from the rivets is often the dominant feature in the measured response, masking the more subtle effects of Lamb wave interactions with the flaws of interest [1]. In this paper we consider the scattering of lowest mode symmetric and antisymmetric Lamb waves from model rivets, and derive analytic expressions for the scattered fields. With solutions of this type the disruptive effects of the rivets can be “processed out” of measured data in order to expose the signals which are due to the flaws in the structure.