Location

Seattle, WA

Start Date

1-1-1996 12:00 AM

Description

In materials characterization, a material’s transfer function is calculated from experimental data. Sometimes, the transfer function of the measurement device, such as an ultrasonic transducer, must be known for this calculation. One of the common methods of obtaining a material transfer function is to measure an elastic waveform before and after it propagates through a material. Then, the transfer function is calculated by deconvolving the two waveforms. We illustrate this process in Fig. 1, where two transducers are placed with a section of plate material between them. The material transfer function is measured by deconvolving the signal at the first transducer from the signal at the second identical transducer. Ideally, this deconvolution would remove the transducer effects. Likewise, if the transducers were placed at the same location (d=0), the transfer function of one transducer could be calculated using a reference transducer.

Book Title

Review of Progress in Quantitative Nondestructive Evaluation

Volume

15B

Chapter

Chapter 8: Systems, New Techniques and Process Control

Section

New Techniques

Pages

2081-2088

DOI

10.1007/978-1-4613-0383-1_273

Language

en

File Format

application/pdf

Share

COinS
 
Jan 1st, 12:00 AM

Impact of Quantization Noise on the Quality of Ultrasonic Signal Deconvolution

Seattle, WA

In materials characterization, a material’s transfer function is calculated from experimental data. Sometimes, the transfer function of the measurement device, such as an ultrasonic transducer, must be known for this calculation. One of the common methods of obtaining a material transfer function is to measure an elastic waveform before and after it propagates through a material. Then, the transfer function is calculated by deconvolving the two waveforms. We illustrate this process in Fig. 1, where two transducers are placed with a section of plate material between them. The material transfer function is measured by deconvolving the signal at the first transducer from the signal at the second identical transducer. Ideally, this deconvolution would remove the transducer effects. Likewise, if the transducers were placed at the same location (d=0), the transfer function of one transducer could be calculated using a reference transducer.